Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.549
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Toxicol Environ Health A ; 87(12): 516-531, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38619152

ABSTRACT

The bark extract from Endopleura uchi has been widely used in traditional medicine to treat gynecological-related disorders, diabetes, and dyslipidemias albeit without scientific proof. In addition, E. uchi bark extract safety, especially regarding mutagenic activities, is not known. The aim of this study was to determine the chemical composition, antitumor, and toxicological parameters attributed to an E. uchi bark aqueous extract. The phytochemical constitution was assessed by colorimetric and chromatographic analyzes. The antiproliferative effect was determined using sulforhodamine B (SRB) assay using 4 cancer cell lines. Cytotoxic and genotoxic activities were assessed utilizing MTT and comet assays, respectively, while mutagenicity was determined through micronucleus and Salmonella/microsome assays. The chromatographic analysis detected predominantly the presence of gallic acid and isoquercitrin. The antiproliferative effect was more pronounced in human colon adenocarcinoma (HT-29) and human breast cancer (MCF-7) cell lines. In the MTT assay, the extract presented an IC50 = 39.1 µg/ml and exhibited genotoxic (comet assay) and mutagenic (micronucleus test) activities at 20 and 40 µg/ml in mouse fibroblast cell line (L929) and mutagenicity in the TA102 and TA97a strains in the absence of S9 mix. Data demonstrated that E. uchi bark possesses bioactive compounds which exert cytotoxic and genotoxic effects that might be associated with its antitumor potential. Therefore, E. uchi bark aqueous extract consumption needs to be approached with caution in therapeutic applications.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Colonic Neoplasms , Humans , Mice , Animals , Plant Extracts/chemistry , Plant Bark/chemistry , DNA Damage , Water , Mutagens , MCF-7 Cells
2.
Food Chem Toxicol ; 184: 114437, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185402

ABSTRACT

The use of nano-based dietary supplements is increasing around the world, as nanotechnology can help enhance nutrient bioavailability. ALP1018 is a newly developed iron-zinc complex supplement designed as a nanoformulation to improve the efficacy of iron and zinc supplementation. However, safety concerns have been raised, as there is no clear evaluation of ALP1018 toxicity. The goal of this study was to determine the potential mutagenicity and genotoxicity of ALP1018 through three standard screenings: the Ames test, which evaluates bacterial reverse mutations; the in vitro test of chromosomal aberration in Chinese hamster lung cells; and the in vivo micronucleus assay using ICR mice. ALP1018 showed no mutagenic effect, as no increase was observed in the presence or absence of metabolic activation (S9 mix) in revertant colonies on all the bacterial strains used in the Ames test. No structural chromosomal abnormalities were observed in the presence or absence of the S9 mix in mammalian cells used in the chromosomal aberration assay. In the micronucleus test, the frequency of micronucleated polychromatic erythrocytes was not significantly increased in mouse bone marrow cells. Based on these findings, we can conclude that ALP1018 is safe to use and has no mutagenic or genotoxic potential.


Subject(s)
Chromosome Aberrations , DNA Damage , Cricetinae , Mice , Animals , Mutagenicity Tests , Mice, Inbred ICR , Micronucleus Tests , Cricetulus , Mutagens/toxicity , Dietary Supplements/toxicity , Iron , Zinc
3.
J Toxicol Environ Health A ; 87(5): 185-198, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38073488

ABSTRACT

Tellimagrandin-I (TL) and camptothin A (CA) are ellagitannins widely found in diverse plant species. Numerous studies demonstrated their significant biological activities, which include antitumor, antioxidant, and hepatoprotective properties. Despite this protective profile, the effects of TL and CA on DNA have not been comprehensively investigated. Thus, the aim of this study was to determine the mutagenic and antimutagenic effects attributed to TL and CA exposure on Salmonella enterica serovar Typhimurium strains using the Ames test. In addition, the cytotoxic and genotoxic effects were examined on human lymphocytes, employing both trypan blue exclusion and CometChip assay. The antigenotoxic effect was determined following TL and CA exposure in the presence of co-treatment with doxorubicin (DXR). Our results from the Ames test indicated that TL or CA did not display marked mutagenic activity. However, TL or CA demonstrated an ability to protect DNA against the damaging effects of the mutagens 4-nitroquinoline-1-oxide and sodium azide, thereby exhibiting antimutagenic properties. In relation to human lymphocytes, TL or CA did not induce significant cytotoxic or genotoxic actions on these cells. Further, these ellagitannins exhibited an ability to protect DNA from damage induced by DOX during co-treatment, indicating their potential beneficial usefulness as antigenotoxic agents. In conclusion, the protective effects of TL or CA against mutagens, coupled with their absence of genotoxic and cytotoxic effects on human lymphocytes, emphasize their potential therapeutic value in chemopreventive strategies.


Subject(s)
Antimutagenic Agents , Salmonella enterica , Humans , Salmonella typhimurium/genetics , Salmonella enterica/genetics , Hydrolyzable Tannins/pharmacology , Serogroup , Mutagenicity Tests , Mutagens/toxicity , Antimutagenic Agents/pharmacology , Plant Extracts/pharmacology , Carcinogens/pharmacology , DNA/pharmacology , Lymphocytes
4.
Mutagenesis ; 39(1): 56-68, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37776161

ABSTRACT

Several bioactive compounds, such as polyphenols, demonstrate low toxicity and prominent effects on cancer cells with antioxidant, anti-inflammatory, and antitumor activities. Such compounds can be found in Amazon mosses Leucobryum martianum (Hornsch.) Hampe ex Müll. Hal. (Hornsch.) and Leucobryum laevifolium (Broth). Antimutagenic assay with Salmonella enterica serovar Typhimurium and cytotoxicity with different eukaryotic cell lines were carried out to screen aqueous, hydroalcoholic, and ethanolic extracts of those Amazon mosses for anticancer potential. The results indicate the capacity of all extracts of both mosses to exert chemopreventive effects against 4-nitroquinoline-N-oxide (4NQO) and 2-aminoanthracene (2-AA), which are direct or indirect mutagens. In particular, the ethanolic and aqueous extract from L. martianum. The ethanolic extract from L. martianum induces significant cytotoxicity by mitochondrial metabolism and cell membrane disruption pathways to tumor or non-tumor cells. The aqueous extract from L. martianum showed a mainly cytotoxic response in the HepG2 cells, a human liver carcinoma, reaching ~90% cytotoxicity. The same extract did not induce significant damage to normal liver cells (F C3H cells) by membrane interaction pathway. The selective cytotoxicity in the aqueous extract of L. martianum makes it a candidate against liver cancer. Further studies, including in vivo models, are necessary to validate the efficacy and safety of the aqueous extract of L. martianum.


Subject(s)
Antimutagenic Agents , Antineoplastic Agents , Bryophyta , Humans , Plant Extracts/pharmacology , Antimutagenic Agents/pharmacology , Antioxidants/pharmacology , Mutagens/toxicity
5.
Protoplasma ; 261(1): 53-64, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37438649

ABSTRACT

Leaves of Newbouldia laevis have been extensively used in solving problems associated with infertility and childbirth in many African countries. Yet, information is very limited on the DNA damaging potential of this plant. This study evaluated the cytogenotoxic effect of the aqueous extract of N. laevis leaf using prokaryotic models (Ames Salmonella fluctuation test using TA100 and TA98 strains of Salmonella typhimurium and SOS Chromotest with Escherichia coli PQ37) and eukaryotic model (Allium cepa root cells). Identification of the volatile organic compounds (VOCs) and phytochemical screening of the plant extract were also performed. Onion bulbs were grown on each concentration (1 to 50%; v/v, extract/tap water) of the extract for chromosomal aberrations and root growth analyses. Results of the Ames test indicated that the extract is mutagenic while the SOS Chromotest results showed good complementation to the Ames test results, although the E. coli PQ37 system showed slightly higher sensitivity in the detection of mutagenicity and genotoxicity of the extract. The plant extract was cytotoxic when compared to the control, inducing a significant (p < 0.05) concentration-dependent inhibition of root growth from 5 to 50% concentrations. At 50% concentration, the extract completely inhibited cell division in the A. cepa. Also, chromosomal aberration increased significantly (p < 0.05) in exposed onions from 5 to 20% concentrations. The mutagenicity and cytogenotoxicity recorded in this report were believed to be caused by the presence of VOCs such as 1,2,3-benzene-triol, 1,2-benzenediol, and 5-hydroxymethylfurfural, and alkaloids in the extract an indication of the cytogenotoxicity of the aqueous extract of N. laevis leaf even at low concentration.


Subject(s)
Escherichia coli , Infertility, Male , Male , Humans , Mutagenicity Tests/methods , Escherichia coli/genetics , DNA Damage , Mutagens/pharmacology , Onions , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
6.
J Toxicol Environ Health A ; 87(6): 245-265, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38115604

ABSTRACT

The consumption of dietary supplements to enhance physical performance has increased significantly in the last century, especially thermogenic pre-workout supplements. Nevertheless, this industry has faced criticism for inadequate safety measures surveillance in regulatory issues regarding their products. The aims of our study were to investigate two pre-workout supplements with respect to (1) mutagenicity utilizing Salmonella/microsome assay; (2) genotoxicity employing cytokinesis-block micronucleus (CBMN) assay protocols; and (3) hepatocytoxicity using WST cell proliferation, activities of lactate dehydrogenase (LDH) and alkaline phosphatase using human liver carcinoma (HepG2) and mouse fibroblast (F C3H) cells. Oxidative stress was determined through glutathione (GSH) measurement and in silico for predictions of pharmacokinetics and toxicity for the most abundant isolated substances present in these supplements. Both supplements induced mutagenicity in all examined bacterial strains, especially in the presence of exogenous metabolism. Further, tested supplements significantly elevated the formation of micronuclei (MN) as well as other cellular phenomena. Concentration- and time-dependent curves were observed for hepatotoxicity in both studied cell lines. In addition, both supplements decreased levels of intracellular and extracellular GSH. In silico predictions showed that the isolated individual compounds failed to induce the observed outcomes. Our findings provide contributions to the molecular mechanisms underlying two pre-workout supplement-induced toxicity and the need for surveillance.


Subject(s)
Amines , Caffeine , Dietary Supplements , Mice , Animals , Humans , Caffeine/pharmacology , Mice, Inbred C3H , Dietary Supplements/toxicity , Oxidative Stress , Glutathione , Mutagens/toxicity , DNA Damage
7.
Article in English | MEDLINE | ID: mdl-37770144

ABSTRACT

Callingcard Vine (Entada polystachya (L.) DC. var. polystachya - Fabaceae) is a common plant in coastal thickets from western Mexico through Central America to Colombia and Brazil, especially in Amazon biome. It has been popularly used as a urinary burning reliever and diuretic. However, the plant chemical constituents are poorly understood and Entada spp. genotoxic potential have not been previously investigated. In the present study we determined the chemical composition of the aqueous E. polystachya crude seed extract (EPCSE) and evaluated the cytotoxic, genotoxic and mutagenic properties of EPCSE in Salmonella typhimurium and Chinese hamster fibroblast (V79) cells. Cytotoxic activity was also evaluated in tumor cell lines (HT29, MCF7 and U87) and non-malignant cells (MRC5). The chemical analysis by High Resolution Mass Spectrometry (HRMS) of EPCSE indicated the presence of saponin and chalcone. The results of the MTT and clonal survival assays suggest that EPCSE is cytotoxic to V79 cells. Survival analysis showed higher IC50 in non-tumor compared with tumor cell lines. EPCSE showed induction of DNA strand breaks as revealed by the alkaline comet assay and micronucleus test. Using the modified comet assay, it was possible to detect the induction of oxidative DNA base damage by EPCSE in V79 cells. Consistently, the extract induced increase lipid peroxidation (TBARS), superoxide dismutase (SOD) and catalase (CAT) activities in V79 cells. In addition, EPCSE induced mutations in S. typhimurium TA98 and TA100 strains, confirming a mutagenic potential. Taken together, our results suggest that EPCSE is cytotoxic and genotoxic to V79 cells and mutagenic to S. typhimurium. These properties can be related to the pro-oxidant ability of the extract and induction of DNA lesions. Additionally, EPCSE could inhibit the growth of tumor cells, especially human colorectal adenocarcinoma (HT29) cell line, and can constitute a possible source of antitumor natural agents.


Subject(s)
Antineoplastic Agents , Fabaceae , Cricetinae , Animals , Humans , Mutagens/toxicity , DNA Damage , Cricetulus , Comet Assay , Cell Line, Tumor , Plant Extracts/toxicity , DNA
8.
Chem Biodivers ; 20(11): e202301238, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769153

ABSTRACT

Sixteen triterpenoids with various skeletal types, five phenylpropanoid derivatives, and two flavonoids were isolated from a propolis sample produced by Apis mellifera collected in the Atlantic Forest of Midwest Brazil. Among these compounds, six triterpenes, namely 3ß,20R-dihydroxylanost-24-en-3-yl-palmitate, (23E)-25-methoxycycloartan-23-en-3-one, 24-methylenecycloartenone, epi-lupeol, epi-α-amyrin, and epi-ß-amyrin are being reported for the first time in propolis, while cycloartenone, (E)-cinnamyl benzoate, and (E)-cinnamyl cinnamate are new findings in Brazilian propolis. The presence of cycloartane- and lanostane-type triterpenoids, the latter being a class of compounds of restricted distribution in propolis worldwide, has not been reported in propolis from Midwest Brazil until now. The ethyl acetate phase obtained from the ethanol extract was effective in preventing biofilm formation by Staphylococcus aureus, with an inhibition rate of about 96 % at 0.5 mg.mL-1 , and with quercetin isolated as one of its active constituents. In contrast, the hexane phase exhibited notable antibacterial activity against Pseudomonas aeruginosa, inhibiting bacterial growth by 92 % at 0.5 mg.mL-1 ; however, none of the triterpenoids isolated from this phase proved active against this pathogen. The ethanol extract was neither toxic nor mutagenic at the concentrations tested, as determined by the in vivo SMART assay on Drosophila melanogaster, even under conditions of high metabolic activation.


Subject(s)
Ascomycota , Propolis , Triterpenes , Animals , Propolis/pharmacology , Propolis/chemistry , Brazil , Mutagens , Drosophila melanogaster , Anti-Bacterial Agents/chemistry , Ethanol , Biofilms , Plant Extracts , Microbial Sensitivity Tests
9.
J Biophotonics ; 16(12): e202300168, 2023 12.
Article in English | MEDLINE | ID: mdl-37679880

ABSTRACT

The use of artificial light sources in plants is considered a type of photobiomodulation (PBM), a trend in agriculture and food industries, aiming at decontamination, pest control, and increased production yield. However, literature lacks a broader assessment to address the effects of photon light spectra on plant characteristics. Here, we aimed to describe the effects of visible light, infrared, and ultraviolet light upon Allium cepa, a known bioindicator, under various light doses. Samples irradiated under visible and infrared light did not show cytotoxicity, genotoxicity, or mutagenicity in any of the evaluated doses. Light induction at 460 and 635 nm significantly stimulated root development of the test organism. In contrast, 254 nm irradiation proved to be cytotoxic, genotoxic, and mutagenic. This work reveals and quantifies the spectral response of A. cepa seeds, suggesting that it can be proposed as a model for future research on mechanisms of PBM in plants.


Subject(s)
Onions , Plant Roots , Mutagens/toxicity , Photons , Light , DNA Damage
10.
J Ethnopharmacol ; 314: 116614, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37164253

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Aloysia gratissima leaves are popularly used to treat respiratory, digestive, and nervous system disorders. Several studies have been carried out to determine the biological activity of A. gratissima, such as its antibacterial and anti-edematogenic activities, but despite the beneficial uses of A. gratissima, few studies have examined the toxicological profile of this plant. AIM OF THE STUDY: This study aimed to determine the chemical composition, cytotoxic, genotoxic, mutagenic potential, and antioxidant activity of an aqueous extract of A. gratissima leaves (AG-AEL). MATERIAL AND METHODS: The phytochemical constitution of AG-AEL was assessed by colorimetric analyses and High-performance liquid chromatography (HPLC). The inorganic elements were detected by Particle-Induced X-ray Emission (PIXE). The antioxidant, cytotoxicity, genotoxic, and mutagenic activities were evaluated in vitro by Di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH), Sulforhodamine B (SRB) assay, comet assay, and Salmonella/microsome assays. RESULTS: AG-AEL indicated the presence of terpenoids, flavonoids, and phenolic acids. HPLC detected rutin at 2.41 ± 0.33 mg/100 mg. PIXE analysis indicated the presence of Mg, Si, P, S, K, Ca, Mn, and Zn. The 50% inhibitory concentration was 84.17 ± 3.17 µg/mL in the DPPH assay. Genotoxic effects were observed using the Comet assay in neuroblastoma (SH-SY5Y) cells and mutations were observed in TA102 and TA97a strains. The extract showed cytotoxic activities against ovarian (OVCAR-3), glioblastoma (U87MG), and colon (HT-29) cancer cell lines. CONCLUSIONS: In conclusion, AG-AEL increased DNA damage, induced frameshift, and oxidative mutations, and showed cytotoxic activities against different cancer cells. The in vitro toxicological effects observed suggest that this plant preparation should be used with caution, despite its pharmacological potential.


Subject(s)
Neuroblastoma , Ovarian Neoplasms , Humans , Female , Apoptosis , Plant Extracts/toxicity , Plant Extracts/chemistry , Cell Line, Tumor , Mutagens/pharmacology , Antioxidants/toxicity
11.
J Toxicol Environ Health A ; 86(11): 361-371, 2023 06 03.
Article in English | MEDLINE | ID: mdl-37096566

ABSTRACT

Plants with medicinal potential may also produce adverse effects in humans. This seems to be the case for the species Rubus rosifolius, where preliminary studies demonstrated genotoxic effects attributed to extracts obtained from leaves and stems of this plant using on HepG2/C3A human hepatoma cells as a model. Considering the beneficial properties of this plant as an antidiarrheal, analgesic, antimicrobial, and antihypertensive and its effects in the treatment of gastrointestinal diseases, the present study was developed with the aim of determining the cytotoxic and genotoxic potential of extracts of leaves and stems of R. rosifolius in primary without metabolic competence in human peripheral blood mononuclear cells (PBMC). Cell viability analyses at concentrations of between 0.01 and 100 µg/ml of both extracts did not markedly affect cell viability. In contrast, assessment of the genotoxic potential using the comet assay demonstrated significant damage to DNA within PBMC from a concentration of 10 µg/ml in the stem extract, and a clastogenic/aneugenic response without cytokinesis-block proliferation index (CBPI) alterations at concentrations of 10, 20, or 100 µg/ml for both extracts. Under our experimental conditions, the data obtained demonstrated genotoxic and mutagenic effects attributed to extracts from leaves and stems of R. rosifolius in cells in the absence of hepatic metabolism.


Subject(s)
Leukocytes, Mononuclear , Rubus , Humans , Plant Extracts/toxicity , Micronucleus Tests , Comet Assay , DNA Damage , Mutagens , Plant Leaves
12.
Mutagenesis ; 38(3): 139-150, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37115513

ABSTRACT

The aim of the present study was to evaluate the compatibility of reconstructed 3D human small intestinal microtissues to perform the in vitro comet assay. The comet assay is a common follow-up genotoxicity test to confirm or supplement other genotoxicity data. Technically, it can be performed utilizing a range of in vitro and in vivo assay systems. Here, we have developed a new reconstructed human intestinal comet (RICom) assay protocol for the assessment of orally ingested materials. The human intestine is a major site of food digestion and adsorption, first-pass metabolism as well as an early site of toxicant first contact and thus is a key site for evaluation. Reconstructed intestinal tissues were dosed with eight test chemicals: ethyl methanesulfonate (EMS), ethyl nitrosourea (ENU), phenformin hydrochloride (Phen HCl), benzo[a]pyrene (BaP), 1,2-dimethylhydrazine hydrochloride (DMH), potassium bromate (KBr), glycidamide (GA), and etoposide (Etop) over a span of 48 h. The RICom assay correctly identified the genotoxicity of EMS, ENU, KBr, and GA. Phen HCl, a known non-genotoxin, did not induce DNA damage in the 3D reconstructed intestinal tissues whilst showing high cytotoxicity as assessed by the assay. The 3D reconstructed intestinal tissues possess sufficient metabolic competency for the successful detection of genotoxicity elicited by BaP, without the use of an exogenous metabolic system. In contrast, DMH, a chemical that requires liver metabolism to exert genotoxicity, did not induce detectable DNA damage in the 3D reconstructed intestinal tissue system. The genotoxicity of Etop, which is dependent on cellular proliferation, was also undetectable. These results suggest the RICom assay protocol is a promising tool for further investigation and safety assessment of novel ingested materials. We recommend that further work will broaden the scope of the 3D reconstructed intestinal tissue comet assay and facilitate broader analyses of genotoxic compounds having more varied modes of actions.


Subject(s)
DNA Damage , Ethylnitrosourea , Humans , Comet Assay/methods , Mutagenicity Tests/methods , Ethyl Methanesulfonate , Intestines , Mutagens/toxicity
13.
Food Chem Toxicol ; 176: 113738, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37003509

ABSTRACT

Many traditional Chinese herbs contain pyrrolizidine alkaloids (PAs), which have been reported to be toxic to livestock and humans. However, the lack of PAs standards makes it difficult to effectively conduct a risk assessment in the varied components of traditional Chinese medicine. It is necessary to propose a suitable strategy to obtain the representative occurrence data of PAs in complex systems. A comprehensive approach for annotating the structures, concentration, and mutagenicity of PAs in three Chinese herbs has been proposed in this article. First, feature-based molecular networking (FBMN) combined with network annotation propagation (NAP) on the Global Natural Products Social Molecular Networking web platform speeds up the process of annotating PAs found in Chinese herbs. Second, a semi-quantitative prediction model based on the quantitative structure and ionization intensity relationship (QSIIR) is used to forecast the amounts of PAs in complex substrates. Finally, the T.E.S.T. was used to provide predictions regarding the mutagenicity of annotated PAs. The goal of this study was to develop a strategy for combining the results of several computer models for PA screening to conduct a comprehensive analysis of PAs, which is a crucial step in risk assessment of unknown PAs in traditional Chinese herbal preparations.


Subject(s)
Drugs, Chinese Herbal , Pyrrolizidine Alkaloids , Humans , Pyrrolizidine Alkaloids/chemistry , Functional Food/analysis , Drugs, Chinese Herbal/analysis , Medicine, Chinese Traditional , Plant Preparations , Mutagens/toxicity , Mutagens/analysis
14.
Article in English | MEDLINE | ID: mdl-37003647

ABSTRACT

The identification of new drugs with few or no adverse effects is of great interest worldwide. In cancer therapy, natural products have been used as chemopreventive and chemotherapeutic agents. Plants from the Brazilian savannah belonging to the Byrsonima genus are popularly known as muricis and have attracted much attention due to their various pharmacological activities. However, there are currently no data on these plants concerning their use as chemopreventive or chemotherapeutic agents in human cell lines. The present study assessed the potential of B. correifolia, B. verbascifolia, B. crassifolia, and B. intermedia extracts as natural alternatives in the prevention and/or treatment of cancer. The chemical constituents present in each extract were analyzed by electrospray ionization-mass spectrometry (ESI-MSN). The mutagenic/antimutagenic (micronucleus assay), genotoxic/antigenotoxic (comet assay), apoptotic/necrotic (acridine orange/ethidium bromide uptake), and oxidative/antioxidative (CM-H2DCFDA) effects of the extracts and their influence on gene expression (RTqPCR) were investigated in nonmetabolizing gastric (MNP01) and metabolizing hepatocarcinoma (HepG2) epithelial cells to evaluate the effects of metabolism on the biological activities of the extracts. The genotoxicity, mutagenicity, and apoptotic effects observed in HepG2 cells with B. correifolia and B. verbascifolia extracts are probably associated with the presence of proanthocyanidins and amentoflavone. In MNP01 cells, none of the four extracts showed mutagenic effects. B. crassifolia and B. intermedia extracts exhibited strong antimutagenicity and enhanced detoxification in HepG2 cells and antioxidant capacities in both types of cells, possibly due to the presence of gallic and quinic acids, which possess chemopreventive properties. This study identifies for the first time B. correifolia and B. verbascifolia extracts as potential agents against hepatocarcinoma and B. crassifolia and B. intermedia extracts as putative chemopreventive agents.


Subject(s)
Anticarcinogenic Agents , Antimutagenic Agents , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Brazil , Plants , Antioxidants/pharmacology , Mutagens/toxicity , Genomic Instability , Antimutagenic Agents/pharmacology
15.
Toxins (Basel) ; 15(1)2023 01 06.
Article in English | MEDLINE | ID: mdl-36668872

ABSTRACT

Herbal remedies used in traditional medicine often contain several compounds combined in order to potentiate their own intrinsic properties. However, herbs can sometimes cause serious health troubles. In Belgium, patients who developed severe aristolochic acid nephropathy ingested slimming pills containing root extracts of an Aristolochia species, as well as the bark of Magnolia officinalis. The goal of the study was to evaluate, on a human renal cell line, Aristolochia and Magnolia extracts for their cytotoxicity by a resazurin cell viability assay, and their genotoxicity by immunodetection and quantification of the phosphorylated histone γ-H2AX. The present study also sought to assess the mutagenicity of these extracts, employing an OECD recognized test, the Ames test, using four Salmonella typhimurium strains with and without a microsomial fraction. Based on our results, it has been demonstrated that the Aristolochia-Magnolia combination (aqueous extracts) was more genotoxic to human kidney cells, and that this combination (aqueous and methanolic extracts) was more cytotoxic to human kidney cells after 24 and 48 h. Interestingly, it has also been shown that the Aristolochia-Magnolia combination (aqueous extracts) was mutagenic with a TA98 Salmonella typhimurium strain in the presence of a microsomial liver S9 fraction. This mutagenic effect appears to be dose-dependent.


Subject(s)
Antineoplastic Agents , Aristolochia , Magnolia , Humans , Mutagens , Aristolochia/toxicity , Kidney , DNA Damage
16.
Food Chem Toxicol ; 174: 113628, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36702364

ABSTRACT

Aloe has a long history of topical and systemic use with testimonials of countless health benefits and is one of the most popular botanical medicines in the world for the management of a wide variety both of benign and serious ailments including irritable bowel syndromes, osteoarthritis, Type II diabetes mellitus, and viral respiratory illness. The human consumption of Aloe vera extract in beverage form has substantially grown over the last several decades, in no small part, due to the increased consumer interest in alternative approaches to health benefits. The principal aim of the present paper is to characterize the research to date that has explored the genotoxic potential of Aloe vera inner leaf gel extract and decolorized whole leaf extract used in commercially available food-grade drinkable products which contain no more than 10 ppm aloin. Despite prevailing public health opinion, especially in Europe, the consensus of the reviewed studies retrieved from the peer-reviewed literature together with a mutagenic evaluation of an Aloe vera whole leaf decolorized spray-dried powder is that these products are not genotoxic.


Subject(s)
Aloe , Diabetes Mellitus, Type 2 , Humans , Plant Extracts/toxicity , Aloe/toxicity , Mutagens , Beverages
17.
J Ethnopharmacol ; 303: 115955, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36436714

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Members of the Psidium genus have been suggested in ethnobotanical research for the treatment of various human diseases, and some studies have already proven their popular uses through research, such as Psidium glaziovianum, which is found in Brazil's northeast and southeast regions and has antinociceptive and anti-inflammatory properties; however, the safety of use has not yet been evaluated. AIM OF THE STUDY: This study investigated the safety of using essential oil obtained from P. glaziovianum leaves (PgEO) in vitro and in vivo models. MATERIALS AND METHODS: Cytotoxicity was evaluated in murine erythrocytes, while acute toxicity, genotoxicity (comet assay) and mutagenicity (micronucleus test) studies were performed using Swiss albino mice. RESULTS: In the cytotoxicity assay, the hemolysis rate indicated a low capacity of PgEO to cause cell lysis (0.33-1.78%). In the acute oral toxicity study, animals treated with up to up to 5000 mg/kg body weight did not observe mortality or physiological changes. Neither dosage caused behavioral problems or death in mice over 14 days. The control and 2,000 mg/kg groups had higher feed intake and body weight than the 5,000 mg/kg PgEO group. Erythrocyte count, hemoglobin level, mean corpuscular volume, and MCV decreased, but serum alanine and aspartate aminotransferases increased. In the genotoxic evaluation, 5000 mg/kg PgEO enhanced nucleated blood cell DI and DF. CONCLUSIONS: The present study describes that PgEO can be considered well tolerated in acute exposure at doses up to 2000 mg/kg, however the dose of 5000 mg/kg of PgEO should be used with caution.


Subject(s)
Oils, Volatile , Psidium , Mice , Humans , Animals , Oils, Volatile/pharmacology , Mutagens , DNA Damage , Comet Assay , Plant Extracts/pharmacology , Mutagenicity Tests
18.
Food Chem ; 408: 135253, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36571881

ABSTRACT

Current techniques used in food analysis overlook genotoxic compounds. This urgently calls for a paradigm shift in analytics towards non-target planar genotoxicity profiling that can detect genotoxins. Up to eight different genotoxins (i.e., genotoxic compound zones) have been detected in 33 oils used for healthy diets. A comparison of fresh oils with oils stored open and closed for one month identified genotoxic degradation products. Characterization of genotoxic zones via high-resolution mass spectrometry revealed oxidized linolenic acid as a source of genotoxicity in all samples. Detoxification via on-surface S9 liver metabolization was investigated, which showed a reduction in most, but not all, genotoxins. Food, feed, dietary supplements, and cosmetics as sources of genotoxicity can now be identified by combining separation, effect detection and optionally simulated metabolization on the same surface. The application of the planar genotoxicity profiling will improve the understanding on food and its impact as well as risk assessment and derived recommendations.


Subject(s)
DNA Damage , Mutagens , Mutagenicity Tests/methods , Mutagens/toxicity , Dietary Supplements , Oils
19.
Toxicology ; 483: 153373, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36370889

ABSTRACT

Recent studies have focused on exploring the efficacy of Cissus quadrangularis extract (EECQ) against various metabolic disorders involving the liver as the prime target organ, suggesting a considerable threat of hepatotoxicity in the person encountering it. Consequently, the current study was aimed to unravel the mutagenic, cytotoxic, mitochondrial dysfunction, apoptotic activity in HepG2 cells, and acute toxicity of EECQ. MTT, SRB, trypan blue dye exclusion, and lactate dehydrogenase (LDH) assay were performed in HepG2 cell lines to determine the cytotoxicity of the extract. The mutagenic potential was determined by the Ames test using various strains of Salmonella typhimurium. Acute toxicity was done at a dose of 2000 mg/kg in Sprague Dawley rats. MTT and SRB cytotoxicity assays demonstrated dose-dependent cytotoxicity of extract. The three highest noncytotoxic doses from the above assay, investigated by trypan blue dye exclusion and LDH assay, did not reveal cytotoxicity. Besides, mitochondrial dysfunction was determined by measuring cellular and mitochondrial ROS, ATP, NAD, mitochondrial membrane potential, Bax/Bcl2 ratio, mitochondrial and cytoplasmic cytochrome c, and apoptosis-inducing factor, were found to be equivalent in both extract exposed and unexposed cells. Moreover, the apoptotic cell morphology and the expression of pro-apoptotic mRNAs and proteins were equivalent in both the group. In acute toxicity, EECQ in rats did not cause any significant change in body weight, liver index, and liver function test. All-encompassing, the present study unraveled that EECQ is not mutagenic, cytotoxic, nor apoptotic in human hepatic cells, as well as neither acute toxicity.


Subject(s)
Cissus , Rats , Humans , Animals , Mutagens , Trypan Blue/pharmacology , Plant Extracts/toxicity , Rats, Sprague-Dawley , Ethanol , Mitochondria
20.
Protoplasma ; 260(1): 89-101, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35467135

ABSTRACT

Concern on the toxicity of final wastewater generated by the petroleum refining industry has increased in recent years due to the potential health threats associated with their release into the waterways. This study determined the mutagenic and genotoxic potential of petroleum refinery wastewater and a receiving river using the Ames fluctuation test on Salmonella typhimurium strains TA100 and TA98, SOS chromotest on Escherichia coli PQ37, and piscine peripheral micronucleus (MN) assay. Analyses of the physicochemical parameters, heavy metal, and organic contents of the samples were also performed. Ames test result showed that the two tested samples were mutagenic with TA100 strain as the more responsive strain for both the refinery wastewater and the river sample in terms of the calculated mutagenic index. A similar result was obtained in the SOS chromotest; however, the E. coli PQ37 system recorded a slightly higher sensitivity for detecting genotoxins than the Salmonella assay in the two samples. MN data showed induction of a concentration-dependent significant (p < 0.05) increase in the frequency of MN by both samples when compared with the negative control. Generally, the refinery wastewater induced the highest mutagenicity and genotoxicity compared to the river sample in the three assays used. Haemoglobin, platelets, red blood cells, mean corpuscular volume, total white blood cells, heterophils, haematocrit, and eosinophils reduced significantly with increased lymphocytes, basophils, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration in fishes exposed to both samples. Total petroleum hydrocarbon, benzene, toluene, phenol index, polycyclic aromatic hydrocarbons, cadmium, mercury, nickel, lead, and vanadium contents analysed in the samples were believed to be responsible for the observed genotoxicity and mutagenicity. The findings of this study revealed that petroleum refinery wastewater is a potential mutagenic and genotoxic risk to the environment.


Subject(s)
Mutagens , Petroleum , DNA Damage , Escherichia coli/genetics , Eukaryota , Mutagenicity Tests , Mutagens/toxicity , Mutagens/analysis , Petroleum/toxicity , Petroleum/analysis , Rivers/chemistry , Wastewater/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL